Three-photon bosonic coalescence in an integrated tritter.
نویسندگان
چکیده
The main features of quantum mechanics reside in interference deriving from the superposition of different quantum states. While current quantum optical technology enables two-photon interference both in bulk and integrated systems, simultaneous interference of more than two particles, leading to richer quantum phenomena, is still a challenging task. Here we report the experimental observation of three-photon interference in an integrated three-port directional coupler realized by ultrafast laser writing. By exploiting the capability of this technique to produce three-dimensional structures, we realized and tested in the quantum regime a three-port beam splitter, namely a tritter, which allowed us to observe bosonic coalescence of three photons. These results open new important perspectives in many areas of quantum information, such as fundamental tests of quantum mechanics with increasing number of photons, quantum state engineering, quantum sensing and quantum simulation.
منابع مشابه
Observation of bosonic coalescence and fermionic anti-coalescence with indistinguishable photons
The symmetrization postulate asserts that the state of particular species of particles can only be of one permutation symmetry type: symmetric for bosons and antisymmetric for fermions. We report some experimental results showing that pairs of photons indistinguishable by all degrees of freedom can exhibit not only a bosonic behavior, as expected for photons, but also a surprisingly sharp fermi...
متن کاملDistinguishability and Many-Particle Interference.
Quantum interference of two independent particles in pure quantum states is fully described by the particles' distinguishability: the closer the particles are to being identical, the higher the degree of quantum interference. When more than two particles are involved, the situation becomes more complex and interference capability extends beyond pairwise distinguishability, taking on a surprisin...
متن کاملScheme for proving the bosonic commutation relation using single-photon interference.
We propose an experiment to directly prove the commutation relation between bosonic annihilation and creation operators, based on the recent experimental success in single-photon subtraction and addition. We devise a single-photon interferometer to realize coherent superpositions of two sequences of photon addition and subtraction. Depending on the interference outcome, the commutation relation...
متن کاملSuggestion of New Correlations for Drop/Interface Coalescence Phenomena in the Absence and Presence of Single Surfactant
After designing and constructing a coalescence cell, drop/interface coalescence phenomenon was studied in the absence and presence of single surfactant.Two surface active agents of sodium dodecyl sulfate and 1-decanol were used. Distilled water was used as dispersed phase. Toluene, n-heptane and aqueous 60% (v/v) of glycerol were selected as continuous phases, separately. It was found that ...
متن کاملMeasuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots.
We revisit Mandel's notion that the degree of coherence equals the degree of indistinguishability by performing Hong-Ou-Mandel- (HOM-)type interferometry with single photons elastically scattered by a cw resonantly driven excitonic transition of an InAs/GaAs epitaxial quantum dot. We present a comprehensive study of the temporal profile of the photon coalescence phenomenon which shows that phot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 4 شماره
صفحات -
تاریخ انتشار 2013